Magnetic nanomaterials with the desirable nature are the basis for developing future spintronic devices, and research for them is of fundamental interest. Here, we explore the realization of half-metallicity and magnetic phase transition for phagraphene nanoribbons in virtue of functional groups (OH and CN) with different coverage fractions and external electric fields. The first-principles calculations show that a single-edge CN functionalization only makes a intrinsic spin-degenerate semiconducting ribbon converted to a quasi-metal or metal, while a single-edge OH modification leads to an occurrence of the half-semiconducting nature regardless of the coverage fraction of groups. Interestingly, the half-metal behavior for the CN and OH double-edge modified ribbons can be achieved either in the zero-electric-field intrinsic state for most of functionalized systems or at a very low electric field, 0.1 V Å-1. More importantly, the observed critical electric field for the transition from ferromagnetic to nonmagnetic phase is lowered significantly almost for all systems, this benefits to design a low electric-field-controlling magnetic switch which can reversibly work between both magnetic and nonmagnetic states. The calculated Gibbs free energy confirms that the group-modified ribbons generally hold a more favorable energy stability in most of the cases, facilitating likely experimental realization.
CITATION STYLE
Yuan, P. F., Hu, R., Fan, Z. Q., & Zhang, Z. H. (2018). Phagraphene nanoribbons: Half-metallicity and magnetic phase transition by functional groups and electric field. Journal of Physics Condensed Matter, 30(44). https://doi.org/10.1088/1361-648X/aadc30
Mendeley helps you to discover research relevant for your work.