Resistance exercise training attenuates the loss of endogenous GLP-1 receptor in the hypothalamus of type 2 diabetic rats

9Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to investigate the effects of resistance exercise training on hypothalamic GLP-1R levels and its related signaling mechanisms in T2DM. The animals were separated into three groups: a non-diabetic control (CON), diabetic control (DM), and diabetic with resistance exercise (DM + EXE) group. The resistance exercise training group performed ladder climbing (eight repetitions, three days per week for 12 weeks). Body weight was slightly lower in the DM + EXE group than the DM group, but difference between the groups was not significant. Food intake and glucose were significantly lower in the DM + EXE group than in the DM group. The blood insulin concentration was significantly higher and glucagon was significantly lower in the DM + EXE group. The DM + EXE group in the hypothalamus showed significant increases in GLP-1R mRNA, protein kinase A (PKA), glucose transporter 2 (GLUT2), and protein kinase B (AKT) and significant decrease in protein kinase C-iota (PKC-iota). Antioxidant enzymes and apoptosis factors were significantly improved in the DM + EXE group compared with the DM group in the hypothalamus. The results suggest that resistance exercise contributes to improvements the overall health of the brain in diabetic conditions.

Cite

CITATION STYLE

APA

Park, S. H., Yoon, J. H., Seo, D. Y., Kim, T. N., Ko, J. R., & Han, J. (2019). Resistance exercise training attenuates the loss of endogenous GLP-1 receptor in the hypothalamus of type 2 diabetic rats. International Journal of Environmental Research and Public Health, 16(5). https://doi.org/10.3390/ijerph16050830

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free