This paper deals with power minimization problem for data-dominated applications based on a novel concept called partially guarded computation. We divide a functional unit into two parts - MSP (Most Significant Part) and LSP (Least Significant Part) - and allow the functional unit to perform only the LSP computation if the range of output data can be covered by LSP. We dynamically disable MSP computation to remove unnecessary transitions thereby reducing power consumption. We also propose a systematic approach for determining optimal location of the boundary between the two parts during high-level synthesis. Experimental results show about 10 to approximately 44% power reduction with about 30 to approximately 36% area overhead and less than 3% delay overhead in functional units.
CITATION STYLE
Choi, J., Jeon, J., & Choi, K. (2000). Power minimization of functional units by partially guarded computation. In Proceedings of the International Symposium on Low Power Electronics and Design (pp. 131–136). https://doi.org/10.1145/344166.344549
Mendeley helps you to discover research relevant for your work.