To examine epididymal function, we attempted to identify highly expressed genes in mouse epididymis using a cDNA microarray containing PCR products amplified from a mouse epididymal cDNA library. We isolated one novel and four known genes-lymphocyte cytosolic protein 1 (Lcp1), complement subcomponents C1r/C1s, Uegf protein, and bone morphogenetic protein and zona pellucida-like domains 1 (Cuzd1), transmembrane epididymal protein 1 (Teddm1), and whey acidic protein 4-disulfide core domain 16 (Wfdc16)-with unknown functions in the epididymis. The novel gene, designated Serpina1f (serine peptidase inhibitor [SERPIN], clade A, member 1f), harbors an open reading frame of 1 233 bp encoding a putative protein of 411 amino acids, including a SERPIN domain. These five genes were predominantly expressed in the epididymis as compared to other organs. In situ hybridization analysis revealed their epididymal region-specific expression patterns. Real-time RT-PCR analysis revealed a significant increase in mRNA expression of these genes around puberty. Castration decreased their expression, except for Lcp1. Testosterone (T) restored these reduced expressions, except for Teddm1; however, this restoration was not observed with 17 beta-estradiol (E2). Administration of T and E2 combination recovered the Serpina1f mRNA concentration; this recovery was also observed with T alone. However, the recovery of Cuzd1 and Wfdc16 mRNA concentrations was inadequate. Neonatal diethylstilbestrol treatment suppressed the Cuzd1, Wfdc16, and Serpina1f mRNA expression in the epididymis of 8-week-old mice; this was not observed with E2. These results suggest that our microarray system can provide a novel insight into the epididymal function on a molecular basis, and the five genes might play important roles in the epididymis. © 2006 by the Society for the Study of Reproduction, Inc.
CITATION STYLE
Yamazaki, K., Adachi, T., Sato, K., Yanagisawa, Y., Fukata, H., Seki, N., … Komiyama, M. (2006). Identification and characterization of novel and unknown mouse epididymis-specific genes by complementary DNA microarray technology. Biology of Reproduction, 75(3), 462–468. https://doi.org/10.1095/biolreprod.105.048058
Mendeley helps you to discover research relevant for your work.