Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets

26Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Background and Purpose - Arterial hypoxia mediates cerebral arteriolar dilation primarily via mechanisms involving activation of ATP-sensitive K+ channels (K(ATP)), which we have shown to be sensitive to ischemic stress. In this study, we determined whether ischemia/reperfusion alters cerebral arteriolar responses to arterial hypoxia in anesthetized piglets. Since adenosine plays an important role in cerebrovascular responses to hypoxia, we also determined whether adenosine-induced arteriolar dilation is affected by ischemic stress. We tested the hypothesis that reductions in cerebral arteriolar dilator responses after ischemia would be proportional to the contribution of K(ATP) to hypoxia and adenosine. Methods - Pial arteriolar diameters were measured using a cranial window and intravital microscopy. We examined arteriolar responses to arterial hypoxia (inhalation of 8.5% and 7.5% O2), to topical adenosine (10-5 and 10-4 mol/L) and to arterial hypercapnia (inhalation of 5% and 10% CO2 in air) before and after 10 minutes of global ischemia. Ischemia was achieved by increasing intracranial pressure. Arterial hypercapnia was used as a positive control for the effectiveness of the ischemic insult. In addition, we evaluated cerebral arteriolar responses to 10-5 and 10-4 mol/L adenosine applied topically with or without glibenclamide, a selective inhibitor of K(ATP) (10-5 and 10-6 mol/L). Finally, we administered theophylline (20 mg/kg, IV) to assess the contribution of adenosine to cerebral arteriolar dilation to arterial hypoxia. Results - Before ischemia, cerebral arterioles dilated by 19±3% to moderate and 29±4% to severe hypoxia (n=7; P

Cite

CITATION STYLE

APA

Bari, F., Louis, T. M., & Busija, D. W. (1998). Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets. Stroke, 29(1), 222–228. https://doi.org/10.1161/01.STR.29.1.222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free