Early-life short-term environmental enrichment counteracts the effects of stress on anxiety-like behavior, brain-derived neurotrophic factor and nuclear translocation of glucocorticoid receptors in the basolateral amygdala

30Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Early life is a decisive stage for the development of physiological and psychological characteristics of an individual. Any stress or disruption of healthy development at this stage has serious long-lasting consequences for the remaining life. Unfortunately, early life stress is a common occurrence in humans and other animals. In this context, we investigated if the provision of environmental enrichment during the pre-weaning phase of rat pups and dams could alter the consequences of early-life maternal-separation stress. Pre-weaning enrichment rescued the effects of maternal separation on the excess secretion of adrenal stress hormones and anxiety-like behavior during adulthood. Enrichment also reduced the effect of stress on the spine density of basolateral amygdala neurons, a brain region critical for stress-induced facilitation of emotional behaviors. Pre-weaning enrichment, provided during early-life, blunted the effects of maternal separation stress on decreased intra-nuclear translocation of glucocorticoid receptors within the amygdala neurons when tested later in adulthood. Early-life, pre-weaning environmental enrichment also increased the amount of brain-derived neurotrophic factor within adult basolateral amygdala. Our observations showed that environmental manipulation during early formative years could be utilized to build lifelong resilience to stress. Complex naturalistic housing and sensory enrichment is, thus, an useful buffer against an impoverished and stressful childhood.

Cite

CITATION STYLE

APA

Hegde, A., Suresh, S., & Mitra, R. (2020). Early-life short-term environmental enrichment counteracts the effects of stress on anxiety-like behavior, brain-derived neurotrophic factor and nuclear translocation of glucocorticoid receptors in the basolateral amygdala. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70875-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free