EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: A potential mechanism of EGFR-driven antagonism of apoptosis

68Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Epidermal growth factor receptor (EGFR) plays an essential role in normal development, tumorigenesis and malignant biology of human cancers, and is known to undergo intracellular trafficking to subcellular organelles. Although several studies have shown that EGFR translocates into the mitochondria in cancer cells, it remains unclear whether mitochondrially localized EGFR has an impact on the cells and whether EGFRvIII, a constitutively activated variant of EGFR, undergoes mitochondrial transport similar to EGFR.Results: We report that both receptors translocate into the mitochondria of human glioblastoma and breast cancer cells, following treatments with the apoptosis inducers, staurosporine and anisomycin, and with an EGFR kinase inhibitor. Using mutant EGFR/EGFRvIII receptors engineered to undergo enriched intracellular trafficking into the mitochondria, we showed that glioblastoma cells expressing the mitochondrially enriched EGFRvIII were more resistant to staurosporine- and anisomycin-induced growth suppression and apoptosis and were highly resistant to EGFR kinase inhibitor-mediated growth inhibition.Conclusions: These findings indicate that apoptosis inducers and EGFR-targeted inhibitors enhance mitochondrial translocalization of both EGFR and EGFRvIII and that mitochondrial accumulation of these receptors contributes to tumor drug resistance. The findings also provide evidence for a potential link between the mitochondrial EGFR pathway and apoptosis. © 2011 Cao et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Cao, X., Zhu, H., Ali-Osman, F., & Lo, H. W. (2011). EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: A potential mechanism of EGFR-driven antagonism of apoptosis. Molecular Cancer, 10. https://doi.org/10.1186/1476-4598-10-26

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free