Online bayesian data fusion in environment monitoring sensor networks

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Assuring reliable data collection in environment monitoring sensor network is a major design challenge. This paper gives a novel Bayesian model to reliably monitor physical phenomenon. We briefly review the errors on the data transfer channel between the sensor quantifying the physical phenomenon and the fusion node, and a discrete K-ary input and K-ary output channel is presented to model the data transfer channel, where K is the number of quantification levels at the sensor. Then, discrete time series models are used to estimate the mean value of the physical phenomenon, and the estimation error is modeled as a Gaussian process. Finally, based on the transition probability of the proposed data transfer channel and the probability of the estimated value transited to specific quantification levels, the level with the maximum posterior probability is decided to be the current value of the physical phenomenon. Evaluations based on real sensor data show that significant gain can be achieved by the proposed algorithms in environment monitoring sensor networks compared with channel-unaware algorithms. © 2014 Yang Dingcheng et al.

References Powered by Scopus

A survey on sensor networks

11451Citations
N/AReaders
Get full text

Outlier detection techniques for wireless sensor networks: A survey

669Citations
N/AReaders
Get full text

Channel-aware distributed detection in wireless sensor networks

243Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Machine learning algorithms for wireless sensor networks: A survey

591Citations
N/AReaders
Get full text

An improved evidence fusion algorithm in multi-sensor systems

28Citations
N/AReaders
Get full text

Data Clustering Technique for In-Network Data Reduction in Wireless Sensor Network

5Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Dingcheng, Y., Zhenghai, W., Lin, X., & Tiankui, Z. (2014). Online bayesian data fusion in environment monitoring sensor networks. International Journal of Distributed Sensor Networks, 2014. https://doi.org/10.1155/2014/945894

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

100%

Readers' Discipline

Tooltip

Engineering 4

57%

Computer Science 2

29%

Design 1

14%

Save time finding and organizing research with Mendeley

Sign up for free