Text-based automatic personality prediction using KGrAt-Net: a knowledge graph attention network classifier

7Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nowadays, a tremendous amount of human communications occur on Internet-based communication infrastructures, like social networks, email, forums, organizational communication platforms, etc. Indeed, the automatic prediction or assessment of individuals’ personalities through their written or exchanged text would be advantageous to ameliorate their relationships. To this end, this paper aims to propose KGrAt-Net, which is a Knowledge Graph Attention Network text classifier. For the first time, it applies the knowledge graph attention network to perform Automatic Personality Prediction (APP), according to the Big Five personality traits. After performing some preprocessing activities, it first tries to acquire a knowing-full representation of the knowledge behind the concepts in the input text by building its equivalent knowledge graph. A knowledge graph collects interlinked descriptions of concepts, entities, and relationships in a machine-readable form. Practically, it provides a machine-readable cognitive understanding of concepts and semantic relationships among them. Then, applying the attention mechanism, it attempts to pay attention to the most relevant parts of the graph to predict the personality traits of the input text. We used 2467 essays from the Essays Dataset. The results demonstrated that KGrAt-Net considerably improved personality prediction accuracies (up to 70.26% on average). Furthermore, KGrAt-Net also uses knowledge graph embedding to enrich the classification, which makes it even more accurate (on average, 72.41%) in APP.

Cite

CITATION STYLE

APA

Ramezani, M., Feizi-Derakhshi, M. R., & Balafar, M. A. (2022). Text-based automatic personality prediction using KGrAt-Net: a knowledge graph attention network classifier. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25955-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free