Based on a consecutive simulation of the 21st century conducted by RegCM3, changes in climate extremes over China are investigated, following abasic validation of the model performances in simulating present climate. The model is one-way nested within the global model of CCSR/NIES/FRCGC MIROC3.2_hires. A total of 150-years (1951-2100) transient simulation is carried out at 25 km grid spacing under the IPCC SRES A1B scenario. The indices of the extremesincludes SU (summer days), FD (frost days), GSL (growing season length) for temperature, SDII (simple daily intensity index), R10 (no. of days with precipitation ≤10 mm/d), and CDD (consecutive dry days) for precipitation. Results show that the model can reproduce both the spatial distribution and the values of the present day annual mean temperature and precipitationwell, and it also shows good performances in simulating the extreme indices. Following the significant warming, the indices of SU and GSL for warm events will increase while the indices of FD for cold events will decrease over China. Heavy precipitation events as measured by SDII and R10 show an general increase over the region, except the decrease of R10 in the Northeast and central Tibetan Plateau andless change or decrease of it along the middle and lower reaches of the Yangtze River. Decrease of drynessas measured by CDD over northern part of China while increase of it over the Tibetan Plateau, Sichuan Basin and other places in southern China are simulated by the model. This leads to the less change of the regional mean CDD in the time series in the 21st century unlike the other indices, which show clear trend of change following the time evolution. © 2012 The Author(s).
CITATION STYLE
Xu, J. Y., Shi, Y., Gao, X. J., & Giorgi, F. (2013). Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chinese Science Bulletin, 58(12), 1443–1452. https://doi.org/10.1007/s11434-012-5548-6
Mendeley helps you to discover research relevant for your work.