Chirally coupled nanomagnets

134Citations
Citations of this article
235Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.

Cite

CITATION STYLE

APA

Luo, Z., Dao, T. P., Hrabec, A., Vijayakumar, J., Kleibert, A., Baumgartner, M., … Gambardella, P. (2019). Chirally coupled nanomagnets. Science, 363(6434), 1435–1439. https://doi.org/10.1126/science.aau7913

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free