Accurate estimation of evaporation from agricultural fields and water bodies is needed for the efficient utilisation and management of water resources at the watershed and regional scale. In this study, multiple linear regression (MLR) and artificial neural network (ANN) techniques are used for the estimation of monthly pan evaporation. The modelling approach includes the various combination of six measured climate parameters consisting of maximum and minimum air temperature, maximum and minimum relative humidity, sunshine hours and wind speed of two stations, namely Gangtok in Sikkim and Imphal in the Manipur states of the northeast hill region of India. Average monthly evaporation varies from 0.62 to 2.68 mm/day for Gangtok, whereas it varies from 1.4 to 4.3 mm/day for Imphal during January and June, respectively. Performance of the developed MLR and ANN models was compared using statistical indices such as coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) with measured pan evaporation values. Correlation analysis revealed that temperature, wind speed and sunshine hour had positive correlation, whereas relative humidity had a negative correlation with pan evaporation. Results showed a slightly better performance of the ANN models over the MLR models for the prediction of monthly pan evaporation in the study area.
CITATION STYLE
Patle, G. T., Chettri, M., & Jhajharia, D. (2020). Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Science and Technology: Water Supply, 20(3), 800–808. https://doi.org/10.2166/ws.2019.189
Mendeley helps you to discover research relevant for your work.