Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4- phenylchalcone oxide (4-PCO, 20 μmol/l), before being incubated with 3H- labeled 14,15-EET (14,15-[3H]EET). 4-PCO blocked conversion of 14,15-[3H] EET to 14,15-[3H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15[3H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [3H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15- EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.
CITATION STYLE
Weintraub, N. L., Fang, X., Kaduce, T. L., VanRollins, M., Chatterjee, P., & Spector, A. A. (1999). Epoxide hydrolases regulate epoxyeicosatrienoic acid incorporation into coronary endothelial phospholipids. American Journal of Physiology - Heart and Circulatory Physiology, 277(5 46-5). https://doi.org/10.1152/ajpheart.1999.277.5.h2098
Mendeley helps you to discover research relevant for your work.