Study on the Performance of Asphalt Modified with Bio-Oil, SBS and the Crumb Rubber Particle Size Ratio

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To enhance the properties of SBS and crumb rubber-modified asphalts, four different amounts (5%, 10%, 15%, and 20%) of castor oil were added to crumb rubber-modified asphalts to mitigate the adverse effects of high levels of fine crumb rubber particles on the aging resistance of SBS and crumb rubber-modified asphalt. Initially, a conventional test was conducted to assess the preliminary effects of bio-oil on the high-temperature and anti-aging properties of SBS and crumb rubber-modified asphalt. Subsequently, dynamic shear rheometer and bending beam rheometer tests were employed to evaluate the impact of bio-oil on the high- and low-temperature and anti-fatigue properties of SBS and crumb rubber-modified asphalt. Finally, fluorescence microscopy and Fourier transform infrared spectroscopy were used to examine the micro-dispersion state of the modifier and functional groups in bio-oil, SBS and crumb rubber composite-modified asphalts. The experimental results indicated that bio-oil increased the penetration of SBS and crumb rubber-modified asphalt, decreased the softening point and viscosity, and significantly improved its aging resistance. The addition of bio-oil enhanced the anti-fatigue properties of SBS and crumb rubber-modified asphalt. The optimal amount of added bio-oil was identified. Bio-oil also positively influenced the low-temperature properties of SBS and crumb rubber-modified asphalt. Although the addition of bio-oil had some adverse effects on the asphalt’s high-temperature properties, the asphalt mixture modified with bio-oil, SBS, and crumb rubber still exhibited superior high-temperature properties compared to unmodified asphalt. Furthermore, fluorescence microscopy and Fourier transform infrared spectroscopy results demonstrated that bio-oil can be uniformly dispersed in asphalt, forming a more uniform cross-linked structure and thereby enhancing the aging resistance of SBS and crumb rubber-modified asphalt. The modification process involved the physical blending of bio-oil, SBS, and crumb rubber within the asphalt. Comprehensive research confirmed that the addition of bio-oil has a significant and positive role in enhancing the properties of SBS and crumb rubber-modified asphalt with different composite crumb rubber particle size ratios.

Cite

CITATION STYLE

APA

Guo, F., Shen, Z., Jiang, L., Long, Q., & Yu, Y. (2024). Study on the Performance of Asphalt Modified with Bio-Oil, SBS and the Crumb Rubber Particle Size Ratio. Polymers, 16(13). https://doi.org/10.3390/polym16131929

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free