Spontaneous voltage transients in mammalian retinal ganglion cells dissociated by vibration

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We recently developed a new method to dissociate neurons from mammalian retinae by utilizing low-Ca2∈+∈ tissue incubation and the vibro-dissociation technique, but without use of enzyme. The retinal ganglion cell somata dissociated by this method showed spontaneous voltage transients (sVT) with the fast rise and slower decay. In this study, we analyzed characteristics of these sVT in the cells under perforated-patch whole-cell configuration, as well as in a single compartment cell model. The sVT varied in amplitude with quantal manner, and reversed in polarity around -80 mV in a normal physiological saline. The reversal potential of sVT shifted dependently on the K∈+∈ equilibrium potential, indicating the involvement of some K∈+∈ conductance. Based on the model, the conductance changes responsible for producing sVT were little dependent on the membrane potential below -50 mV. These results could suggest the presence of isolated, inhibitory presynaptic terminals attaching on the ganglion cell somata. © 2008 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Motomura, T., Hayashida, Y., & Murayama, N. (2008). Spontaneous voltage transients in mammalian retinal ganglion cells dissociated by vibration. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4984 LNCS, pp. 64–72). https://doi.org/10.1007/978-3-540-69158-7_8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free