This paper assesses the feasibility of fabricating thin-film composite membranes from stacked graphene nanosheets in combination with a polymer as a selective layer on a macroporous support membrane for utilization in osmosis applications. Reproducible dispersion procedures based on the liquid-phase exfoliation technique have been established to fabricate multi-layer graphene from graphite with the assistance of the high boiling point solvent N-methylpyrrolidone (NMP) or the low boiling point solvent ethanol. A high graphene yield of up to 7.2% with a concentration of 0.36 mg mL-1 was achieved in the NMP-based dispersions. Membrane fabrication toward a graphene-polymer sandwich architecture has been developed, in which graphene laminates modified with or without a chemical cross-linker are placed in between two polyethyleneimine (PEI layers) laminated onto the support membrane (either nylon or polyethersulfone microfiltration membranes). Graphene-polymer composite membranes were successfully fabricated via the pressure-assisted filtration technique and the performance of the membranes was studied in terms of pure water permeability and dextran rejection. The best performing membranes had water permeability varying from 33-77 L m-2 h-1 bar-1 and rejection of dextran 2000 kDa up to 96%; the selective layer has a thickness of ∼1 μm. Forward osmosis experiments with polyacrylic acid sodium salt as draw agent demonstrate the feasibility of using the established graphene-polymer composite membranes for such applications. This journal is
CITATION STYLE
Akca, S., Arpaçay, P., McEvoy, N., Prymak, O., Blau, W. J., & Ulbricht, M. (2021). Feasibility of graphene-polymer composite membranes for forward osmosis applications. Materials Advances, 2(19), 6439–6454. https://doi.org/10.1039/d1ma00424g
Mendeley helps you to discover research relevant for your work.