Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library

6Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The identification of endogenous cis-regulatory DNA elements (CREs) responsive to endogenous and environmental cues is important for studying gene regulation and for biotechnological applications but is labor and time intensive. Alternatively, by taking a synthetic biology approach small specific DNA binding sites tailored to the needs of the scientist can be generated and rapidly identified. Results: Here we report a novel approach to identify stimulus-responsive synthetic CREs (SynCREs) from an unbiased random synthetic element (SynE) library. Functional SynCREs were isolated by screening the SynE libray for elements mediating transcriptional activity in plant protoplasts. Responsive elements were chromatin immunoprecipitated by targeting the active Ser-5 phosphorylated RNA polymerase II CTD (Pol II ChIP). Using sequential enrichment, deep sequencing and a bioinformatics pipeline, candidate responsive SynCREs were identified within a pool of constitutively active DNA elements and further validated. These included bonafide biotic/abiotic stress-responsive motifs along with novel SynCREs. We tested several SynCREs in Arabidopsis and confirmed their response to biotic stimuli.Conclusions: Successful isolation of synthetic stress-responsive elements from our screen illustrates the power of the described methodology. This approach can be applied to any transfectable eukaryotic system since it exploits a universal feature of the eukaryotic Pol II. © 2013 Roccaro et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Roccaro, M., Ahmadinejad, N., Colby, T., & Somssich, I. E. (2013). Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library. BMC Plant Biology, 13(1). https://doi.org/10.1186/1471-2229-13-164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free