Among the different techniques for mass analysis, ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) is the method of choice for highly complex samples, as it offers unrivaled mass accuracy and resolving power, combined with a high degree of flexibility in hybrid instruments as well as for ion activation techniques. FTICR instruments are readily embraced by the biological and biomedical research communities and applied over a wide range of applications for the analysis of biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In the field of natural organic matter (NOM) analysis, petroleum-related studies currently dominate FTICR-MS applications. Recently, however, there is a growing interest in developing high-performance MS methods for the characterization of NOM samples from natural aquatic and terrestrial environments. Here, we present an overview of FTICR-MS techniques for complex, non-petroleum NOM samples, including data analysis and novel tandem mass spectrometry (MS/MS) methods for structural classifications. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.
CITATION STYLE
Qi, Y., Fu, P., & Volmer, D. A. (2022, September 1). Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications. Mass Spectrometry Reviews. John Wiley and Sons Inc. https://doi.org/10.1002/mas.21634
Mendeley helps you to discover research relevant for your work.