Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals

24Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line (∼1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside ∼1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims. We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods. Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results. We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at ∼0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions. The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.

Cite

CITATION STYLE

APA

Ogihara, M., Kokubo, E., Suzuki, T. K., & Morbidelli, A. (2018). Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals. Astronomy and Astrophysics, 612. https://doi.org/10.1051/0004-6361/201832654

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free