The distribution of dark-matter (DM) subhalos in our galaxy remains disputed, leading to varying γ-ray and ν flux predictions from their annihilation or decay. In this work, we study how, in the inner galaxy, subhalo tidal disruption from the galactic baryonic potential impacts these signals. Based on state-of-the art modeling of this effect from numerical simulations and semi-analytical results, updated subhalo spatial distributions are derived and included in the CLUMPY code. The latter is used to produce a thousand realizations of the γ-ray and ν sky. Compared to predictions based on DM only, we conclude a decrease of the flux of the brightest subhalo by a factor of 2 to 7 for annihilating DM and no impact on decaying DM: the discovery prospects or limits subhalos can set on DM candidates are affected by the same factor. This study also provides probability density functions for the distance, mass, and angular distribution of the brightest subhalo, among which the mass may hint at its nature: it is most likely a dwarf spheroidal galaxy in the case of strong tidal effects from the baryonic potential, whereas it is lighter and possibly a dark halo for DM only or less pronounced tidal effects.
CITATION STYLE
Hütten, M., Stref, M., Combet, C., Lavalle, J., & Maurin, D. (2019). γ-ray and ν searches for dark-matter subhalos in the milkyway with a baryonic potential. Galaxies, 7(2). https://doi.org/10.3390/GALAXIES7020060
Mendeley helps you to discover research relevant for your work.