High-affinity sulfate transporters SULTR1;1 and SULTR1;2 are expressed at epidermis and cortex of Arabidopsis (Arabidopsis thaliana) roots during sulfur limitation. Here, we report that SULTR1;1 and SULTR1;2 are two essential components of the sulfate uptake system in roots and are regulated at posttranscriptional levels together with the previously reported transcriptional control. Double knockout of SULTR1;1 and SULTR1;2 by T-DNA insertion gene disruption resulted in complete lack of sulfate uptake capacity and severely affected plant growth under low-sulfur conditions. Expression of epitope-tagged proteins SULTR1;1mycHis and SULTR1;2mycHis, under the control of the cauliflower mosaic virus 35S promoter, rescued the uptake of sulfate and the growth of the sultr1;1 sultr1;2 double knockout mutant. The recovery of the double knockout phenotypes was attributable to the posttranscriptional accumulation of sulfate transporter proteins that derive from the epitope-tagged transgenic constructs. Both SULTR1;1mycHis and SUTLR1;2mycHis mRNAs were predominantly found in roots and slightly induced by long-term sulfur limitation. SULTR1;1mycHis and SULTR1;2mycHis proteins were found exclusively in roots, and significantly accumulated by sulfur limitation, correlating with the induction of sulfate uptake activities. In the time course of short-term sulfate starvation treatment, SULTR1;1mycHis and SULTR1;2mycHis proteins were significantly accumulated during the 8- to 72-h period, causing substantial induction of sulfate uptake activities, while their corresponding mRNAs were expressed constantly around the initial levels, except for the transient induction in the first 2 h. This study suggested the importance of root-specific and sulfur deficiency-inducible accumulation of SULTR1;1 and SULTR1;2 sulfate transporter proteins for the acquisition of sulfate from low-sulfur environment. © 2007 American Society of Plant Biologists.
CITATION STYLE
Yoshimoto, N., Inoue, E., Watanabe-Takahashi, A., Saito, K., & Takahashi, H. (2007). Posttranscriptional regulation of high-affinity sulfate transporters in arabidopsis by sulfur nutrition. Plant Physiology, 145(2), 378–388. https://doi.org/10.1104/pp.107.105742
Mendeley helps you to discover research relevant for your work.