The vomeronasal organ (VNO) is an odor detection system that mediates many pheromone-sensitive behaviors. Vomeronasal sensory neurons (VSNs), located in the VNO, are the initial site of interaction with odors/pheromones. However, how an individual VSN transduces chemical signals into electrical signals is still unresolved. Here, we show that a Ca2+-activated Cl- current contributes ∼80% of the response to urine in mouse VSNs. Using perforated patch clamp recordings with gramicidin, which leaves intracellular chloride undisrupted, we found that the urine-induced inward current (V hold = -80 mV) was decreased in the presence of chloride channel blockers. This was confirmed using whole cell recordings and altering extracellular chloride to shift the reversal potential. Further, the urine-induced currents were eliminated when both extracellular Ca2+ and Na+ were removed. Using inside-out patches from dendritic tips, we recorded Ca2+-activated Cl- channel activity. Several candidates for this Ca2+-activated Cl- channel were detected in VNO by reverse transcription-polymerase chain reaction. In addition, a chloride cotransporter, Na+-K+-2Cl- isoform 1, was detected and found to mediate much of the chloride accumulation in VSNs. Collectively, our data demonstrate that chloride acts as a major amplifier for signal transduction in mouse VSNs. This amplification would increase the responsiveness to pheromones or odorants. © 2010 Yang and Delay.
CITATION STYLE
Yang, C., & Delay, R. J. (2010). Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. Journal of General Physiology, 135(1), 3–13. https://doi.org/10.1085/jgp.200910265
Mendeley helps you to discover research relevant for your work.