Silkworm excrement is a very useful biomass waste, composed of layer-structured fats and proteins, which are great precursors for carbon composite materials. In this work, new porous composites derived from silkworm excrement were prepared for selective separation of flavor 4-methylanisole from the binary 4-methylanisole/4-anisaldehyde mixture. In particular, the silkworm excrement, possessing a unique nanosheet structure, is converted into a graphite-like carbon by a simple calcination strategy followed by a metal-ion-doping procedure. This Fe@C composite exhibits a special nano-spongy morphology, anchoring Fe3C/Fe5C2 on the carbon nanosheets. Density functional theory simulations showed that 4-methylanisole presents a stronger π-πinteraction and attraction forces with sp2 carbon nanosheets in Fe@C composites than 4-anisaldehyde. The selective adsorption experiments further confirmed that the Fe@C composites exhibited a 4-methylanisole capacity of 7.3 mmol/g at 298 K and the highest selectivity of 17 for an equimolar 4-methylanisole/4-anisaldehyde mixture among the examined adsorbents including MOFs and commercial activated carbon materials, which demonstrates the potential of this low-cost and eco-friendly porous carbon material as a promising sustainable adsorbent.
CITATION STYLE
Wu, Y., Huang, Y., Huang, H., Muhammad, Y., Huang, Z., Winarta, J., … Mu, B. (2019). Porous Fe@C Composites Derived from Silkworm Excrement for Effective Separation of Anisole Compounds. ACS Omega, 4(25), 21204–21213. https://doi.org/10.1021/acsomega.9b02681
Mendeley helps you to discover research relevant for your work.