Meiotic studies using multicolor fluorescent in-situ hybridization (FISH) and chromosome painting were carried out in three patients with sex chromosome anomalies (47,XXY; 46,XY/47,XXY and 47,XYY). In the two patients with Klinefelter syndrome, although variable percentages of XXY cells (88.5 and 28.3%) could be found in the premeiotic stages, none of the abnormal cells entered meiosis, and all pachytenes were XY. However, the abnormal testicular enviroment of these patients probably resulted in meiotic I non-disjunction, and a certain proportion of post-reductional cells were XY (18.3 and 1.7%). The fact that none of the spermatozoa were XY also suggests the existence of an arrest at the secondary spermatocyte or the spermatid level. In the XYY patient, most (95.9%) premeiotic cells were XYY. The percentage of XYY pachytenes was 57.9%. The sex chromosomes were either in close proximity (XYY) or the X chromosome was separated from the two Ys (X + YY). A high proportion (42.1%) of post-reductional germ cell were XY. However, only 0.11% of spermatozoa were disomic for the sex chromosomes. In this case, the data suggest the existence of an arrest of the abnormal cells at the primary and the secondary spermatocyte or the spermatid level, giving rise to the continuous elimination of abnormal cells in the germ-cell line along spermatogenesis. The fact that the proportion of diploid spermatozoa was only increased in one of the three cases (XXY) is also suggestive of an arrest of the abnormal cell lines in these patients. The two apparently non-mosaic patients were, in fact, germ-cell mosaics. This suggest that the cytogenetic criteria used to define non-mosaic patients may be inadequate; thus, the risk of intracytoplasmic sperm injection in apparently non-mosaics may be lower than expected.
CITATION STYLE
Blanco, J., Egozcue, J., & Vidal, F. (2001). Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies (47,XXY, mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization. Human Reproduction, 16(5), 887–892. https://doi.org/10.1093/humrep/16.5.887
Mendeley helps you to discover research relevant for your work.