Investigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable source

25Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study investigated the effects of millimeter wave (MMW) irradiation with a wide range of frequencies on the proliferation and activity of normal human skin fibroblast (NB1RBG) and human glioblastoma (A172) cells. Very few studies have focused on low-power, long-term irradiation of cells with a widely tunable source. Our research examined non-thermal effects on cells exposed to radiation at low power with tunable frequencies from 70 GHz to 300 GHz. A widely tunable MMW source was set within a cell culture incubator. To avoid the effect of heat generation due to irradiation, the intensity was maintained below 10 μW and the device was arranged such that the irradiation came from underneath the cells. Irradiation was performed by sweeping from 70 GHz to 300 GHz in 1.0 GHz steps. The MMW source was positioned 100 mm away from the container in which the cells were cultured. Cells were exposed to MMWs for either 3, 70 or 94 h. Measurements of cell proliferation were made using the alternating current measurement method. We found no difference in proliferation between cells exposed to MMWs and unexposed cells. A colorimetric method using novel tetrazolium compound: MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] was used for cell activity and cytotoxicity assays. We found no difference in cellular activity or toxicity between MMW-exposed cells and sham cells. Our study thus found no non-thermal effect as a result of exposure of cells to 70 GHz to 300 GHz of radiation.

Cite

CITATION STYLE

APA

Yaekashiwa, N., Otsuki, S., Hayashi, S., & Kawase, K. (2018). Investigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable source. Journal of Radiation Research, 59(2), 116–121. https://doi.org/10.1093/jrr/rrx075

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free