We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, M⊙Kp = 11.6, T eff = 5576 K, M⊙ = 0.98 M⊙). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊙⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars. © 2013. The American Astronomical Society. All rights reserved..
CITATION STYLE
Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., Howard, A. W., Isaacson, H., Johnson, J. A., … Latham, D. W. (2013). KEPLER-63b: A giant planet in a polar orbit around a young sun-like star. Astrophysical Journal, 775(1). https://doi.org/10.1088/0004-637X/775/1/54
Mendeley helps you to discover research relevant for your work.