Purpose: The inhibition of estrogen receptor alpha (ERα) or the activation of ERβ can inhibit papillary thyroid cancer (PTC), but the precise mechanism is not known. We aimed to explore the role of ERα and ERβ on the production of endogenous peroxisome proliferator-activated receptor gamma (PPARγ) ligands in PTC. Methods: 2 PTC cell lines, 32 pairs of PTC tissues and matched normal thyroid tissues were used in this study. The levels of endogenous PPARγ ligands 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), 13-S-hydroxyoctadecadienoic acid (13(S)-HODE), and15-deoxy-Δ12,14-prostaglandin J2 (PGJ2) were measured by ELISA. Results: The levels of PGJ2 and 15(S)-HETE were significantly reduced in PTC, but 13(S)-HODE was not changed. Activation of ERα or inhibition of ERβ significantly downregulated the production of PGJ2, 15(S)-HETE and 13(S)-HODE, whereas inhibition of ERα or activation of ERβ markedly upregulated the production of these three ligands. Application of endogenous PPARγ ligands inhibited growth, induced apoptosis of cancer cells, and promoted the efficacy of chemotherapy. Conclusion: The levels of endogenous PPARγ ligands PGJ2 and 15(S)-HETE are significantly decreased in PTC. The inhibition of ERα or activation of ERβ can inhibit PTC by stimulating the production of endogenous PPARγ ligands to induce apoptosis in cancer cells.
CITATION STYLE
Yang, S., Gong, Z., Liu, Z., Wei, M., Xue, L., Vlantis, A. C., … Chen, G. G. (2021). Differential Effects of Estrogen Receptor Alpha and Beta on Endogenous Ligands of Peroxisome Proliferator-Activated Receptor Gamma in Papillary Thyroid Cancer. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.708248
Mendeley helps you to discover research relevant for your work.