Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii

3Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

20(S)-Protopanaxadiol (APPD) has potential uses in the pharmaceutical, cosmetic, and food industries because of its anti-stress, anti-fatigue, anti-cancer, anti-inflammatory, and anti-wrinkle properties. However, APPD production is difficult because β-glycosidases that convert the protopanaxadiol (PPD)-type ginsenoside compound K to APPD are rare. β-Glycosidase from Dictyoglomus turgidum (DT-bgl) has the highest specific activity for converting compound K to APPD, but exhibits no activity towards the α-l-arabinopyranoside moiety in compound Y. Therefore, β-glycosidase from Caldicellulosiruptor bescii (CB-bgl), which has a strong α-l-arabinopyranosidase activity, was used along with DT-bgl. The volumetric and specific productivities of the two-enzyme system for APPD using ginseng root extract were 38.4- and 38.7-fold higher, respectively, than those of β-glycosidase from Pyrococcus furiosus, which had the highest volumetric productivity previously reported, at the same enzyme and substrate concentrations. Thus, DT-bgl combined with CB-bgl completely converted PPD-type ginsenosides to APPD with the highest volumetric and specific productivities reported thus far.

Cite

CITATION STYLE

APA

Choi, J. H., Seo, M. J., Shin, K. C., Lee, K. W., & Oh, D. K. (2017). Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0524-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free