A lot of different methods are being opted for improving the educational standards through monitoring of the classrooms. The developed world uses Smart classrooms to enhance faculty efficiency based on accumulated learning outcomes and interests. Smart classroom boards, audio-visual aids, and multimedia are directly related to the Smart classroom environment. Along with these facilities, more effort is required to monitor and analyze students’ outcomes, teachers’ performance, attendance records, and contents delivery in on-campus classrooms. One can achieve more improvement in quality teaching and learning outcomes by developing digital twins in on-campus classrooms. In this article, we have proposed DeepClass-Rooms, a digital twin framework for attendance and course contents monitoring for the public sector schools of Punjab, Pakistan. DeepClassRooms is cost-effective and requires RFID readers and high-edge computing devices at the Fog layer for attendance monitoring and content matching, using convolution neural network for on-campus and online classes.
CITATION STYLE
Razzaq, S., Shah, B., Iqbal, F., Ilyas, M., Maqbool, F., & Rocha, A. (2023). DeepClassRooms: a deep learning based digital twin framework for on-campus class rooms. Neural Computing and Applications, 35(11), 8017–8026. https://doi.org/10.1007/s00521-021-06754-5
Mendeley helps you to discover research relevant for your work.