Synthesis of 2,6-disubstituted pyridin-3-yl C-2′-deoxyribonucleosides through chemoselective transformations of bromo-chloropyridine C-nucleosides

16Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

2-Bromo-6-chloro- and 6-bromo-2-chloropyridin-3-yl deoxyribonucleosides were prepared by the Heck coupling of bromo-chloro-iodopyridines with TBS-protected deoxyribose glycal. Some of their Pd-catalyzed cross-coupling reactions proceeded chemoselectively at the position of the bromine, whereas nucleophilic substitutions were unselective and gave mixtures of products. The mono-substituted intermediates were used for another coupling or nucleophilic substitution giving rise to a small library of title 2,6-disubstituted pyridine C-deoxyribonucleosides. The title nucleosides did not exert antiviral or cytostatic effects. is © 2013 The Royal Society of Chemistry.

Cite

CITATION STYLE

APA

Kubelka, T., Slavětínská, L., Eigner, V., & Hocek, M. (2013). Synthesis of 2,6-disubstituted pyridin-3-yl C-2′-deoxyribonucleosides through chemoselective transformations of bromo-chloropyridine C-nucleosides. Organic and Biomolecular Chemistry, 11(28), 4702–4718. https://doi.org/10.1039/c3ob40774h

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free