DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice

30Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

Abstract

More than 65 million people have been confirmed infection with SARS-CoV-2 and more than 1 million have died from COVID-19 and this pandemic remains critical worldwide. Effective vaccines are one of the most important strategies to limit the pandemic. Here, we report a construction strategy of DNA vaccine candidates expressing full length wild type SARS-CoV-2 spike (S) protein, S1 or S2 region and their immunogenicity in mice. All DNA vaccine constructs of pCMVkan-S, -S1 and -S2 induced high levels of specific binding IgG that showed a balance of IgG1/IgG2a response. However, only the sera from mice vaccinated with pCMKkan-S or -S1 DNA vaccines could inhibit viral RBD and ACE2 interaction. The highest neutralizing antibody (NAb) titer was found in pCMVkan-S group, followed by -S1, while -S2 showed the lowest PRNT50 titers. The geometric mean titers (GMTs) were 2,551, 1,005 and 291 for pCMVkan-S, -S1 and -S2, respectively. pCMVkan-S construct vaccine also induced the highest magnitude and breadth of T cells response. Analysis of IFN-γ positive cells after stimulation with SARS-CoV-2 spike peptide pools were 2,991, 1,376 and 1,885 SFC/106 splenocytes for pCMVkan-S, -S1 and -S2, respectively. Our findings highlighted that full-length S antigen is more potent than the truncated spike (S1 or S2) in inducing of neutralizing antibody and robust T cell responses.

Cite

CITATION STYLE

APA

Prompetchara, E., Ketloy, C., Tharakhet, K., Kaewpang, P., Buranapraditkun, S., Techawiwattanaboon, T., … Ruxrungtham, K. (2021). DNA vaccine candidate encoding SARS-CoV-2 spike proteins elicited potent humoral and Th1 cell-mediated immune responses in mice. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free