We investigated the intracellular survival of multidrug-resistant Acinetobacter baumannii (MDRAB) clinical isolates in macrophages, after phagocytosis, to determine their virulence characteristics. After ATCC 19606 and 5 clinical isolates of MDRAB were phagocytosed by mouse and human macrophages, the bacterial count of MDRAB strains, R4 and R5, increased in the mouse macrophages, 24 hours after phagocytosis. Bacterial count of the strains, R1 and R2, was almost equal 4 and 24 hours after phagocytosis. Intracellular reactive oxygen species was detected in the macrophages after phagocytosis of these bacteria. Further, the strains R1, R2, R4, and R5 showed higher catalase activity than ATCC 19606. Additionally, strains R1, R4, and R5 grew more efficiently than ATCC 19606 in the presence of H2O2, whereas growth of strains R2 and R3 was marginally more than that of ATCC 19606 in the presence of H2O2. The MDRAB clinical isolates altered the expression of TNF-α, IL-1β, IL-6, and MIP-2 mRNA induced in J774A.1 cells, 24 hours after phagocytosis. These results provide insights into the renewed virulence characteristics of MDRAB clinical isolates. Finally, tigecycline killed MDRAB phagocytosed by the macrophages more effectively than colistin, although colistin and tigecycline are both considered effective antibiotics for the treatment of MDRAB.
CITATION STYLE
Sato, Y., Unno, Y., Miyazaki, C., Ubagai, T., & Ono, Y. (2019). Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53846-3
Mendeley helps you to discover research relevant for your work.