Gaussian-binary restricted Boltzmann machines for modeling natural image statistics

27Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

Abstract

We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We further show that GRBMs are capable of learning meaningful features without using a regularization term and that the results are comparable to those of independent component analysis. This is illustrated for both a two-dimensional blind source separation task and for modeling natural image patches. Our findings exemplify that reported difficulties in training GRBMs are due to the failure of the training algorithm rather than the model itself. Based on our analysis we derive a better training setup and show empirically that it leads to faster and more robust training of GRBMs. Finally, we compare different sampling algorithms for training GRBMs and show that Contrastive Divergence performs better than training methods that use a persistent Markov chain.

Cite

CITATION STYLE

APA

Melchior, J., Wang, N., & Wiskott, L. (2017). Gaussian-binary restricted Boltzmann machines for modeling natural image statistics. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free