Cellulose composites with graphene for tissue engineering applications

46Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Tissue engineering is an interdisciplinary field that combines principles of engineering and life sciences to obtain biomaterials capable of maintaining, improving, or substituting the function of various tissues or even an entire organ. In virtue of its high availability, biocompatibility and versatility, cellulose was considered a promising platform for such applications. The combination of cellulose with graphene or graphene derivatives leads to the obtainment of superior composites in terms of cellular attachment, growth and proliferation, integration into host tissue, and stem cell differentiation toward specific lineages. The current review provides an up-to-date summary of the status of the field of cellulose composites with graphene for tissue engineering applications. The preparation methods and the biological performance of cellulose paper, bacterial cellulose, and cellulose derivatives-based composites with graphene, graphene oxide and reduced graphene oxide were mainly discussed. The importance of the cellulose-based matrix and the contribution of graphene and graphene derivatives fillers as well as several key applications of these hybrid materials, particularly for the development of multifunctional scaffolds for cell culture, bone and neural tissue regeneration were also highlighted.

Cite

CITATION STYLE

APA

Oprea, M., & Voicu, S. I. (2020, December 1). Cellulose composites with graphene for tissue engineering applications. Materials. MDPI AG. https://doi.org/10.3390/ma13235347

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free