Ethylene glycol (EG) is an important chemical used as antifreeze and a raw material in polyester synthesis. The EG biosynthetic pathway from D-xylose with D-xylonate as key intermediate has some advantages, but showed low EG production. Here, we reconstructed and optimized this pathway in Escherichia coli. In view of the greater intracellular prevalence of NADH, an aldehyde reductase FucO using NADH was employed to convert glycoaldehyde into EG, in replacement of NADPH-dependent reductase YqhD. To suppress the accumulation of by-products acetate and glycolate, two genes arcA and aldA were knocked out. The resultant strain Q2843 produced 72 g/L EG under fed-batch fermentation conditions, with the yield of 0.40 g/g D-xylose and EG productivity of 1.38 g/L/h. The use of NADH-dependent enzyme FucO and by-product elimination significantly improved the performance of EG producing strain, which represented the highest titer, yield and productivity of EG reported so far.
CITATION STYLE
Wang, Y., Xian, M., Feng, X., Liu, M., & Zhao, G. (2018). Biosynthesis of ethylene glycol from d-xylose in recombinant escherichia coli. Bioengineered, 9(1), 233–241. https://doi.org/10.1080/21655979.2018.1478489
Mendeley helps you to discover research relevant for your work.