Consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can mitigate the progression of diseases in which oxidative stress represents a common underlying biochemical process. Nrf2-regulated gene expression regulates detoxification of reactive oxygen species. EPA and DHAwere subjected to an in vitro free radical oxidation process that models in vivo conditions. Oxidized n-3 fatty acids reacted directly with the negative regulator of Nrf2, Keap1, initiating Keap1 dissociation with Cullin3, thereby inducing Nrf2-directed gene expression. Liquid chromatography-tandem mass spectrometry analyses of oxidized EPA demonstrated the presence of novel cyclopentenone-containing molecules termed J3-isoprostanes in vitro and in vivo and were shown to induce Nrf2-directed gene expression. These experiments provide a biochemical basis for the hypothesis that formation of J-ring compounds generated from oxidation of EPA and DHA in vivo can reach concentrations high enough to induce Nrf2-based cellular defense systems. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Gao, L., Wang, J., Sekhar, K. R., Yin, H., Yared, N. F., Schneider, S. N., … Freeman, M. L. (2007). Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. Journal of Biological Chemistry, 282(4), 2529–2537. https://doi.org/10.1074/jbc.M607622200
Mendeley helps you to discover research relevant for your work.