Background. Histone deacetylases and histone acetyl transferases covalently modify histone proteins, consequentially altering chromatin architecture and gene expression. Methods. The effects of suberoylanilide hydroxamic acid, a HDAC inhibitor, on 320 HSR colon cells were assessed in 320 HSR colon cancer cells. Results. Concentration and time-dependent inhibition of 320 HSR cell proliferation was observed. Treatment of 320 HSR cells with 5 M SAHA for 72 h significantly inhibited their growth by 50% as compared to that of the control. Fluorescence-activated cell sorting analysis demonstrated significant inhibition of cell cycle progression (sub-G1 arrest) and induction of apoptosis upon various SAHA concentrations after 48 h. In addition, the anti-apoptosis proteins, survivin and Bcl-xL, were significantly inhibited by SAHA after 72 h of treatment. Immunocytochemistry analysis revealed that SAHA-resistant cells were positive for cyclin A (85%), ki-67 (100%), p53 (100%), survivin (100%), and p21 (90%) expression. Furthermore, a significant increase cyclin A-, Ki-67-, p53-, survivin-, and p21-positive cells were noted in SAHA-resistant tumor cells. Conclusion. Our results demonstrated for the first time in 320 HSR colon adenocarcinoma cells that SAHA might be considered as an adjuvant therapy for colon adenocarcinoma. © 2010 Sun et al; licensee BioMed Central Ltd.
CITATION STYLE
Sun, P. C., Tzao, C., Chen, B. H., Liu, C. W., Yu, C. P., & Jin, J. S. (2010). Suberoylanilide hydroxamic acid induces apoptosis and sub-G1 arrest of 320 HSR colon cancer cells. Journal of Biomedical Science, 17(1). https://doi.org/10.1186/1423-0127-17-76
Mendeley helps you to discover research relevant for your work.