Coumarin is a natural compound abundant in plant-based foods such as citrus fruits, tomatoes, vegetables and green tea. Although coumarin has been reported to exhibit anti-coagulant, anti-inflammation and cholesterol-lowering properties, the effect of coumarin on hepatic lipid metabolism remains unclear. In the present study, we evaluated the ability of coumarin to protect against hepatic steatosis associated with a high-fat diet (HFD) and investigated potential mechanisms underlying this effect. C57BL/6J mice were fed a normal diet, HFD and HFD containing 0·05 % courmarin for 8 weeks. The present results showed that coumarin reduced weight gain and abdominal fat mass in mice fed the HFD for 8 weeks (P< 0·05). Coumarin also significantly reduced the HFD-induced elevation in total cholesterol, apoB, leptin and insulin (P< 0·05). In the liver of HFD-fed mice, coumarin significantly reduced total lipids, TAG and cholesterol (38, 22 and 9 % reductions, respectively; P< 0·05), as well as lipid droplet number and size. Additionally, thiobarbituric acid-reactive substance levels, as an indicator of hepatic steatosis, were attenuated by coumarin (P< 0·05). Finally, coumarin suppressed the HFD-induced up-regulation in fatty acid synthase (FAS) activity, and the expression of sterol regulatory element-binding protein-1, FAS, acetyl-CoA carboxylase 1, PPARγ and CCAAT/enhancer-binding protein-α in the liver. Taken together, these results demonstrate that coumarin could prevent HFD-induced hepatic steatosis by regulating lipogenic gene expression, suggesting potential targets for preventing hepatic steatosis.
CITATION STYLE
Um, M. Y., Moon, M. K., Ahn, J., & Youl Ha, T. (2013). Coumarin attenuates hepatic steatosis by down-regulating lipogenic gene expression in mice fed a high-fat diet. The British Journal of Nutrition, 109(9), 1590–1597. https://doi.org/10.1017/S0007114512005260
Mendeley helps you to discover research relevant for your work.