Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO2 Electrolysis

6Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The unique characteristics of nanofibers in rational electrode design enable effective utilization and maximizing material properties for achieving highly efficient and sustainable CO2 reduction reactions (CO2RRs) in solid oxide electrolysis cells (SOECs). However, practical application of nanofiber-based electrodes faces challenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte. To tackle this challenge, a novel hybrid nanofiber electrode, La0.6Sr0.4Co0.15Fe0.8Pd0.05O3−δ (H-LSCFP), is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique. After consecutive treatment in 100% H2 and CO2 at 700 °C, LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface, enhancing CO2 adsorption. The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm−2 in CO2 at 800 °C and 1.5 V, setting a new benchmark among reported nanofiber-based electrodes. Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO2RR. The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure, paving the way for further advancements and nanofiber applications in CO2-SOECs. [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Akhmadjonov, A., Bae, K. T., & Lee, K. T. (2024). Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO2 Electrolysis. Nano-Micro Letters, 16(1). https://doi.org/10.1007/s40820-023-01298-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free