The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the world recent months by causing many deaths and enormous economic damage worldwide. The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases has increased day by day. In this work, we extend the well-known SIR compartmental model to deterministic and stochastic time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies imposed by Moroccan authorities. The main features of the work include the well-posedness of the models and conditions under which the COVID-19 may become extinct or persist in the population. Parameter values have been estimated from real data and numerical simulations are presented for forecasting the COVID-19 spreading as well as verification of theoretical results.
CITATION STYLE
Mahrouf, M., Boukhouima, A., Zine, H., Lotfi, E. M., Torres, D. F. M., & Yousfi, N. (2021). Modeling and forecasting of covid-19 spreading by delayed stochastic differential equations. Axioms, 10(1), 1–16. https://doi.org/10.3390/axioms10010018
Mendeley helps you to discover research relevant for your work.