Background: Liquid chromatography-mass spectrometry (LC-MS) is one of the major techniques for the quantification of metabolites in complex biological samples. Peak modeling is one of the key components in LC-MS data pre-processing.Results: To quantify asymmetric peaks with high noise level, we developed an estimation procedure using the bi-Gaussian function. In addition, to accurately quantify partially overlapping peaks, we developed a deconvolution method using the bi-Gaussian mixture model combined with statistical model selection.Conclusions: Using extensive simulations and real data, we demonstrated the advantage of the bi-Gaussian mixture model over the Gaussian mixture model and the method of kernel smoothing combined with signal summation in peak quantification and deconvolution. The method is implemented in the R package apLCMS: http://www.sph.emory.edu/apLCMS/. © 2010 Yu and Peng; licensee BioMed Central Ltd.
CITATION STYLE
Yu, T., & Peng, H. (2010). Quantification and deconvolution of asymmetric LC-MS peaks using the bi-Gaussian mixture model and statistical model selection. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-559
Mendeley helps you to discover research relevant for your work.