Proteins are molecular machines requiring flexibility to function. Crystallographic B-factors and Molecular Dynamics (MD) simulations both provide insights into protein flexibility on an atomic scale. Nuclear Magnetic Resonance (NMR) lacks a universally accepted analog of the B-factor. However, a lack of convergence in atomic coordinates in an NMR-based structure calculation also suggests atomic mobility. This paper describes a pattern in the coordinate uncertainties of backbone heavy atoms in NMR-derived structural “ensembles” first noted in the development of FindCore2 (previously called Expanded FindCore: DA Snyder, J Grullon, YJ Huang, R Tejero, GT Montelione, Proteins: Structure, Function, and Bioinformatics 82 (S2), 219-230) and demonstrates that this pattern exists in coordinate variances across MD trajectories but not in crystallographic B-factors. This either suggests that MD trajectories and NMR “ensembles” capture motional behavior of peptide bond units not captured by B-factors or indicates a deficiency common to force fields used in both NMR and MD calculations.
CITATION STYLE
Reinknecht, C., Riga, A., Rivera, J., & Snyder, D. A. (2021). Patterns in protein flexibility: A comparison of NMR “ensembles”, MD trajectories, and crystallographic B-factors. Molecules, 26(5). https://doi.org/10.3390/molecules26051484
Mendeley helps you to discover research relevant for your work.