Purpose: To evaluate the Load of Rupture of implants of membranes of microbial cellulose (Zoogloea sp.) and extended polytetrafuoroethylene in sharp defects of abdominal wall of rats. Methods: Sixty Wistar male rats, with a mean weight of 437,7g ± 40,9, anesthetized by a mixture of ketamine (5mg/100g) and xylazine (2mg/100g), were submitted to a rectangular (2x3cm) excision of the abdominal wall, including fascia, muscle and peritoneum, and treated with membranes of microbial cellulose (MC) (MC Group- 30 animals) or extended polytetrafluoroethylene (ePTFE) (ePTFE Group- 30 animals). Each group was subdivided in 14th POD, 28th POD and 60th POD Subgroups. Under anesthesia, animals were submitted to euthanasia at 14 th POD, 28th POD and 60th POD for evaluation of Load of Rupture. Results: Load of Rupture levels were significantly elevated (p<0, 05) among 14th, 28th and 60th postoperative days from each Group. When compared between groups, values of Load of Rupture were significantly larger (p<0, 05) in ePTFE Group than in MC Group. Conclusion: Resistance to strength at implant/host interface was more pronounced in PTFEe Group than in MC Group.
CITATION STYLE
Falcão, S. C., Coelho, A. R. D. B., & Neto, J. E. (2008). Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cirurgica Brasileira, 23(2), 184–191. https://doi.org/10.1590/S0102-86502008000200012
Mendeley helps you to discover research relevant for your work.