Engineering an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species

27Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. Results: We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90% efficiency. We characterized the upstream DNA sequence of a d-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108bp intron 1 was included in the reporter construct. We identifieda conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named PDAO1-in1m1, showed very similar luciferase activity to the wild-type promoter upon induction with d-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. Conclusion: The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts.

Cite

CITATION STYLE

APA

Liu, Y., Koh, C. M. J., Ngoh, S. T., & Ji, L. (2015). Engineering an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species. Microbial Cell Factories, 14(1). https://doi.org/10.1186/s12934-015-0357-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free