Label-free electrochemical biosensor based on green-synthesized reduced graphene oxide/Fe3O4/nafion/polyaniline for ultrasensitive detection of SKBR3 cell line of HER2 breast cancer biomarker

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components—such as aptamers, antibodies, or nucleic acids—with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102–106 cells mL−1, with a detection limit of 5 cells mL−1.

Cite

CITATION STYLE

APA

Hosseine, M., Naghib, S. M., & Khodadadi, A. (2024). Label-free electrochemical biosensor based on green-synthesized reduced graphene oxide/Fe3O4/nafion/polyaniline for ultrasensitive detection of SKBR3 cell line of HER2 breast cancer biomarker. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62231-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free