Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice

74Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivated by recent reports of nematic order in twisted bilayer graphene (TBG), we investigate the impact of the triangular moiré superlattice degrees of freedom on nematicity. In TBG, the nematic order parameter is not Ising like, as in tetragonal crystals, but has a three-state Potts character related to the threefold rotational symmetry (C3z) of the moiré superlattice. We find that, even in the presence of static strain that explicitly breaks the C3z symmetry, the system can still undergo a nematic-flop phase transition that spontaneously breaks in-plane twofold rotations. Moreover, elastic fluctuations, manifested as acoustic phonons, mediate a nemato-orbital coupling that ties the nematic director orientation to certain soft directions in momentum space, rendering the Potts-nematic transition mean field and first order. In contrast to the case of rigid crystals, the Fermi surface hot spots associated with these soft directions are maximally coupled to low-energy nematic fluctuations in the moiré superlattice case.

Cite

CITATION STYLE

APA

Fernandes, R. M., & Venderbos, J. W. F. (2020). Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice. Science Advances, 6(32). https://doi.org/10.1126/sciadv.aba8834

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free