Development of Hybrid Systems by Integrating an Adsorption Process with Natural Zeolite and/or Palygorskite into the Electrocoagulation Treatment of Sanitary Landfill Leachate

1Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The effectiveness of a hybrid approach comprising electrocoagulation (EC) and adsorption (AD) (using natural zeolite and/or palygorskite) processes to treat raw sanitary landfill leachate (SLL) was investigated in terms of color, dissolved chemical oxygen demand (d-COD), nitrate nitrogen (NO3−-N) and ammonium nitrogen (NH4+-N) removal. Optimal EC conditions were found with a current density of 30 mA cm−2, Fe electrode material and pH 8. Implementation of the AD process using zeolite (ADzeo) as pre- or post-treatment for EC significantly increased the NH4+-N removal efficiency. The ADzeo-EC sequential treatment showed considerably higher color removal compared to the EC-ADzeo sequential treatment and was therefore determined to be the optimal sequential treatment. Integration of the AD process using palygorskite (ADpal) into the first or middle stage of the ADzeo-EC treatment system enhanced the overall NO3−-N removal efficiency. The hybrid ADzeo-ADpal-EC treatment system exhibited the highest simultaneous removal efficiencies of color, d-COD, NO3−-N and NH4+-N, corresponding to 95.06 ± 0.19%, 48.89 ± 0.89%, 68.38 ± 0.93% and 78.25 ± 0.61%, respectively. The results of this study indicate that the ADzeo-ADpal-EC hybrid system is a promising and efficient approach for treating raw landfill leachate.

Cite

CITATION STYLE

APA

Genethliou, C., Triantaphyllidou, I. E., Chatzitheodorou, D., Tekerlekopoulou, A. G., & Vayenas, D. V. (2023). Development of Hybrid Systems by Integrating an Adsorption Process with Natural Zeolite and/or Palygorskite into the Electrocoagulation Treatment of Sanitary Landfill Leachate. Sustainability (Switzerland), 15(10). https://doi.org/10.3390/su15108344

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free