The PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.
CITATION STYLE
Xu, P., Xiong, W., Lin, Y., Fan, L., Pan, H., & Li, Y. (2021). Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death and Disease, 12(8). https://doi.org/10.1038/s41419-021-04047-2
Mendeley helps you to discover research relevant for your work.