High-Dose-Rate Three-Dimensional Image-Guided Adaptive Brachytherapy (3D IGABT) for Locally Advanced Cervical Cancer (LACC): A Narrative Review on Imaging Modality and Clinical Evidence

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Background: Brachytherapy (BT) is a critical component of radiotherapy for locally advanced cervical cancer (LACC), and it has rapidly developed in recent decades. Since the advent of three-dimensional image-guided adaptive brachytherapy (3D-IGABT), magnetic resonance imaging (MRI) has emerged as the primary modality for image guidance. Meanwhile, other imaging modalities, such as computed tomography, 18F-fluorodeoxyglucose positron emission tomography, ultrasound, and their combinations have also been widely studied. Materials and methods: We reviewed studies on different imaging modalities utilized for target delineation and planning. Emerging techniques in IGABT like real-time image guidance and 3D printing were also included. We summarized research on their feasibility and concentrated on their clinical outcomes. Results: MRI-guided BT was the gold standard, and CT-guided BT was the most widely applied. Other modalities have shown feasibility and promising efficacy in dosimetry studies and preliminary outcomes. The longer-term clinical outcomes associated with these approaches require further elucidation. Conclusions: As 3D-IGABT was validated by promising clinical outcomes, the future of BT for LACC is expected to progress toward the refinement of more effective image-guided procedures. Moreover, achieving operational consensus and driving technological advancements to mitigate the inherent limitations associated with different imaging modes remain essential.

Cite

CITATION STYLE

APA

Wang, K., Wang, J., & Jiang, P. (2024, January 1). High-Dose-Rate Three-Dimensional Image-Guided Adaptive Brachytherapy (3D IGABT) for Locally Advanced Cervical Cancer (LACC): A Narrative Review on Imaging Modality and Clinical Evidence. Current Oncology. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/curroncol31010004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free