Developmentally programmed cell death is regulated by a balance between pro- and anti-death signaling. During Drosophila metamorphosis, the removal of larval tissues is dependent on the steroid hormone ecdys one, which controls the levels of pro- and anti-death molecules. Ecdysone binds to its heterodimeric receptor ecdysone receptor/ultraspiracle to mediate transcription of primary response genes. Here we show that CARMER, an arginine-histone methyltransferase, is critical in coordinating ecdysone-induced expression of Drosophila cell death genes. Ablation of CARMER blocks ecdysone-induced cell death in Drosophila cells, but not apoptosis induced by cell stress. We demonstrate that CARMER associates with the ecdysone receptor complex and modulates the ecdysone-induced transcription of a number of apoptotic genes. Thus, the chromatin-modifying protein, CARMER, modulates cell death by controlling the hormone-dependent expression of the core cell death machinery.
CITATION STYLE
Cakouros, D., Daish, T. J., Mills, K., & Kumar, S. (2004). An Arginine-Histone Methyltransferase, CARMER, Coordinates Ecdysone-mediated Apoptosis in Drosophila Cells. Journal of Biological Chemistry, 279(18), 18467–18471. https://doi.org/10.1074/jbc.M400972200
Mendeley helps you to discover research relevant for your work.